1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
| """ La Minute Papillon - Mix final (chant + orchestre ambiant moderne) - Génère un accompagnement orchestral (MIDI) en Dm, 76 bpm, ~4:00 - Rendre le MIDI en WAV via FluidSynth (SoundFont GM) - Charger la voix (MP3), caler, traitement pro léger, mixer et exporter en WAV """
import os import math import tempfile import numpy as np import soundfile as sf import librosa import librosa.effects from midiutil import MIDIFile from scipy.signal import butter, lfilter
INPUT_MP3_PATH = "la minute papillon.mp3" SOUNDFONT_PATH = "/chemin/vers/ton/GM.sf2" OUTPUT_WAV_PATH = "La_Minute_Papillon_Mix_Final.wav"
TEMPO_BPM = 76 KEY_ROOT_MIDI = 62 TARGET_DURATION = 240.0 INTENSITY_DB = -20.0 ORCH_OFFSET_SEC = 0.0
Dm = [62, 65, 69]; Bb = [58, 62, 65]; F = [53, 57, 60]; C = [55, 59, 62] Gm = [55, 58, 62]; A7 = [57, 61, 64]
INTRO = [Dm, Bb, F, C] COUPLET = [Dm, Bb, F, C] REFRAIN = [Bb, F, Gm, A7] PONT = [Gm, Dm, Bb, A7] FINAL = [Dm, Bb, F, Dm]
SECTIONS = [ ("Intro", INTRO), ("Couplet", COUPLET), ("Refrain", REFRAIN), ("Couplet", COUPLET), ("Refrain", REFRAIN), ("Pont", PONT), ("Refrain", REFRAIN), ("Final", FINAL), ]
def db_to_lin(db): return 10.0 ** (db / 20.0)
def normalize_peak(y, peak=0.98): m = np.max(np.abs(y)) + 1e-12 return y * (peak / m)
def butter_highpass(y, sr, cutoff=80.0, order=2): b, a = butter(order, cutoff / (0.5 * sr), btype='high') return lfilter(b, a, y)
def simple_comp(y, thresh_db=-14, ratio=2.5, makeup_db=0.0): rms = np.sqrt(np.mean(y**2) + 1e-12) lvl_db = 20*np.log10(rms + 1e-12) if lvl_db > thresh_db: diff = lvl_db - thresh_db gain_red_db = diff - diff/ratio y = y * db_to_lin(-(gain_red_db)) if makeup_db != 0.0: y *= db_to_lin(makeup_db) return y
def build_orchestral_midi(midi_path, tempo=TEMPO_BPM): """ Pistes: 0 Piano, 1 Flute (lignes discrètes), 2 Strings, 3 Pad, 4 Bass, 5 Percs Orchestration "ambiant moderne": nappes, arpèges doux, percs vaporeuses. """ mf = MIDIFile(6) for trk in range(6): mf.addTempo(trk, 0, tempo)
CH_PIANO, CH_FLUTE, CH_STR, CH_PAD, CH_BASS, CH_DR = 0,1,2,3,4,9 PRG_PIANO, PRG_FLUTE, PRG_STR, PRG_PAD, PRG_BASS = 0,73,48,89,32 mf.addProgramChange(0, CH_PIANO, 0, PRG_PIANO) mf.addProgramChange(1, CH_FLUTE, 0, PRG_FLUTE) mf.addProgramChange(2, CH_STR, 0, PRG_STR) mf.addProgramChange(3, CH_PAD, 0, PRG_PAD) mf.addProgramChange(4, CH_BASS, 0, PRG_BASS)
flute_motif = [62, 64, 65, 67, 69, 70, 72, 74]
t = 0.0 for name, sect in SECTIONS: for chord in sect: dur = 4.0 root = min(chord); third = sorted(chord)[1]; fifth = max(chord)
arp = [root, fifth, third, fifth, root, fifth, third, fifth] for i, n in enumerate(arp): mf.addNote(0, CH_PIANO, n, t + i*0.5, 0.48, 60)
for n in chord: mf.addNote(2, CH_STR, n+12, t, dur, 50)
mf.addNote(3, CH_PAD, root-12, t, dur, 38) mf.addNote(3, CH_PAD, fifth-12, t, dur, 34)
mf.addNote(4, CH_BASS, root-24, t, 2.8, 48) mf.addNote(4, CH_BASS, root-24, t+2.0, 1.6, 44)
mf.addNote(1, CH_FLUTE, flute_motif[(int(t)) % len(flute_motif)], t+2.5, 1.2, 54)
mf.addNote(5, 9, 42, t+0.0, 0.08, 22) mf.addNote(5, 9, 37, t+1.5, 0.08, 20) mf.addNote(5, 9, 42, t+2.0, 0.08, 22) mf.addNote(5, 9, 44, t+3.0, 0.08, 18)
t += dur
with open(midi_path, "wb") as f: mf.writeFile(f)
def render_midi_to_wav(midi_path, sf2_path, out_wav_path, sr=48000): """Rendu via pyfluidsynth / FluidSynth.""" import fluidsynth fs = fluidsynth.Synth(samplerate=sr) sfid = fs.sfload(sf2_path) fs.program_select(0, sfid, 0, 0) fs.start(driver="file", filename=out_wav_path) fs.midi_load(midi_path) fs.midi_play() fs.delete()
def main(): assert os.path.exists(INPUT_MP3_PATH), f"Introuvable: {INPUT_MP3_PATH}" assert os.path.exists(SOUNDFONT_PATH), f"Introuvable: {SOUNDFONT_PATH}"
voice, sr_v = librosa.load(INPUT_MP3_PATH, sr=48000, mono=True) voice = normalize_peak(voice, 0.98)
with tempfile.TemporaryDirectory() as td: midi_path = os.path.join(td, "orch.mid") wav_orch = os.path.join(td, "orch.wav") build_orchestral_midi(midi_path, tempo=TEMPO_BPM) render_midi_to_wav(midi_path, SOUNDFONT_PATH, wav_orch, sr=48000) orch, sr_o = sf.read(wav_orch, dtype="float32") if orch.ndim == 2: orch = orch.mean(axis=1)
if sr_o != sr_v: orch = librosa.resample(orch, orig_sr=sr_o, target_sr=sr_v) sr_mix = sr_v else: sr_mix = sr_o
v = voice.copy() v = butter_highpass(v, sr_mix, cutoff=80.0, order=2) v = simple_comp(v, thresh_db=-14, ratio=2.5, makeup_db=0.0)
orch = orch * db_to_lin(INTENSITY_DB)
n = max(len(v), len(orch)) if len(v) < n: v = np.pad(v, (0, n-len(v))) if len(orch)< n: orch = np.pad(orch, (0, n-len(orch)))
mix = v + orch mix = normalize_peak(mix, 0.98)
sf.write(OUTPUT_WAV_PATH, mix, sr_mix, subtype="PCM_24") print(f"✅ Mix final exporté : {OUTPUT_WAV_PATH}")
if __name__ == "__main__": main()
|